Những câu hỏi liên quan
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 22:55

Ta có:

\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)

\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)

\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)

\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left(x-y\right)^2\le0\)

\(\Rightarrow x=y\)

Thế vào pt đầu:

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)

\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)

\(\Rightarrow...\)

2. 4 biến xét dài quá, để người khác

Bình luận (1)
Nguyễn Việt Lâm
13 tháng 1 2022 lúc 22:26

2.

\(a^2+b^2+c^2+d^2=2d^2\) chẵn

\(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) luôn chẵn

\(\Rightarrow a+b+c+d\) chẵn

\(\Rightarrow\) trong 4 số, luôn có 2 chẵn 2 lẻ, hoặc 4 số đều chẵn 

Cả 2 trường hợp đều suy ra abcd chia hết cho 4 (tích của ít nhất 2 số chẵn)

Bình luận (2)
Nguyễn Việt Lâm
14 tháng 1 2022 lúc 5:47

Ủa mà nhìn lại bài 2 làm sai (nhìn sai đề thành chứng minh abcd chia hết cho 4, trong khi thực tế ko có d)

Vậy làm như sau:

Do bình phương của 1 số nguyên chia 4 chỉ có thể dư 0 hoặc 1, \(\Rightarrow a^2+b^2+c^2\) chia 4 dư 0, 1, 2, 3 (tùy thuộc trong số a;b;c có bao nhiêu số là chẵn)

Trong khi đó \(d^2\) chia 4 dư 1 nên ta chỉ có 2 TH sau:

TH1: \(a^2+b^2+c^2\) và \(d^2\) đều chia hết cho 4

\(\Rightarrow a;b;c\) đều chẵn \(\Rightarrow abc⋮4\)

TH2: \(a^2+b^2+c^2\) và \(d^2\) đều chia 4 dư 1

\(\Rightarrow\) Trong a;b;c có đúng 1 số lẻ và 2 số chẵn

\(\Rightarrow abc⋮4\)

Bình luận (0)
tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Bình luận (0)
Đinh Thị Ngọc Anh
Xem chi tiết
Lê Thị Hồng Vân
Xem chi tiết
Khôi Bùi
15 tháng 9 2018 lúc 22:11

2 ) b )

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)

Bình luận (0)
Đào Tùng Dương
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
Nguyễn Quang Định
5 tháng 8 2017 lúc 17:39

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

Bình luận (1)
Akai Haruma
5 tháng 8 2017 lúc 21:54

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

Bình luận (0)
Akai Haruma
5 tháng 8 2017 lúc 21:59

Bài 1:

Sử dụng kết quả của bài 5.

Ta có : \(a^2+b^2+c^2+4abc< \frac{1}{2}\Leftrightarrow 2(a^2+b^2+c^2)+8abc< 1\)

\(\Leftrightarrow a^2+b^2+c^2+(a+b+c)^2-2(ab+bc+ac)+8abc< 1\)

\(\Leftrightarrow a^2+b^2+c^2-2(ab+bc+ac)+8abc<0\) (do \(a+b+c=1\) )

\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2+8abc\)

Thay \(1=a+b+c\), BĐT tương đương với:

\(2(ab+bc+ac)(a+b+c)> (a^2+b^2+c^2)(a+b+c)+8abc\)

\(\Leftrightarrow 2[ab(a+b)+bc(b+c)+ca(c+a)]>a^3+b^3+c^3+ab(a+b)+bc(b+c)+ca(c+a)+2abc\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)>a^3+b^3+c^3+2abc\)

\(\Leftrightarrow a^2(b+c)+b^2(c+a)+c^2(a+b)>a^3+b^3+c^3+2abc\)

Điều này đã được cm ở phần c bài 5

Do đó ta có đpcm.

Bình luận (1)
Lellllllll
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Bình luận (0)